| CHAPTER 1: INTRODUCTION | Page | |--|---------------------------------| | Paragraph 1. PURPOSE AND SCOPE | 1-1 | | 2. APPLICABILITY | 1-1 | | 3. REFERENCES | 1-1 | | 4. PARTNERING EFFORT | 1-1 | | 5. DESIGN CONCERNS UNIQUE TO COLD-FORMED | 1-1 | | a. General b. Seismic Design | 1-1
1-1 | | 6. USES OF COLD-FORMED STEEL | 1-3 | | a. Generalb. Steel Framing Systems | 1-3
1-3 | | 7. COLD-FORMED SUPPLIERS | 1-3 | | 8. RESPONSIBILITIES | 1-3 | | a. Designersb. Manufacturersc. Contractord. Contractor Quality Control | 1-3
1-4
1-4
1-4 | | 9. MATERIALS | 1-5 | | a. Markingsb. Nomenclaturec. Strain Hardeningd. Damaged Materialse. Fire Resistance Rating | 1-5
1-5
1-6
1-7
1-7 | | CHAPTER 2: DESIGN OF COLD-FORMED STEEL | | | Paragraph 1. INTRODUCTION | 2-1 | | 2. PRESCRIPTIVE METHODS. | 2-1 | | a. Generalb. Material Thicknessc. Engineered Portions of the Prescriptive Code | 2-1
2-1
2-2 | | 3. COLD-FORMED STEEL FRAMING. | 2-2 | | a. General | 2-2 | | (continued) | Page | |--|--| | b. Design Guidance c. Wall Studs and Roof Trusses d. Effective Width e. Advantages of Cold-Formed Steel f. Limit States g. Design Thickness | 2-2
2-4
2-4
2-4
2-5 | | 4. DESIGN OF STRUCTURAL ELEMENTS | 2-5 | | a. AISI Specification b. Preliminary Member Selection c. Element Behavior d. Element Slenderness e. Simplified Section Properties f. Members g. Wall Studs and Wall Stud Assemblies h. Design Guide for Cold-Formed Steel Trusses i. Shear Wall Design Guide j. Serviceability Deflection Limits k. Continuous Beams and Joists l. Effect of Holes m. Floor Vibrations | 2-5
2-5
2-5
2-6
2-6
2-7
2-8
2-8
2-8
2-9
2-10
2-10 | | 5. FASTENERS AND CONNECTIONS | 2-12 | | a. Sheet Metal Screws b. Bolts c. Welds d. Anchors e. Connections and Joints f. Fasteners | 2-12
2-12
2-12
2-13
2-13
2-15 | | 6. USEFUL RELEVANT INFORMATION | 2-15 | | a. Beam Diagrams and Formulasb. Material Weightsc. Software | 2-15
2-15
2-15 | | CHAPTER 3: SEISMIC DESIGN GUIDANCE FOR SHEAR WALLS | | | Paragraph 1. INTRODUCTION | 3-1 | | 2. TI 809-04, SEISMIC DESIGN FOR BUILDINGS | 3-1 | | 3. STRUCTURAL DESIGN CRITERIA | 3-3 | | 4. DEFLECTION AND DRIFT LIMITS | 3-3 | | | (continued) | Page | |--|---|---| | 5. TO | RSION | 3-4 | | 6. CC | OLD FORMED STEEL SEISMIC REQUIREMENTS | 3-5 | | b.
c.
d. | Wind and Earthquake Loads Boundary Members, Chords and Collectors Shear Panel Anchors Pretension of Diagonal Straps All Steel Design | 3-5
3-5
3-5
3-5
3-5 | | 7. DI <i>l</i> | AGONAL STRAP DESIGN | 3-5 | | 8. CC | DLUMN DESIGN | 3-6 | | b.
c.
d. | Column Applied Loads Column Axial Capacity Column Bending Load and Composite Behavior Column Combined Axial and Moment Capacity Column Shear Capacity | 3-6
3-6
3-7
3-8
3-9 | | 9. CC | NNECTION DESIGN ASSUMPTIONS | 3-9 | | b.
c. | Connection Design Assumptions and Applied Loads
Screwed Fastener Connection Design
Design Rupture Strength
Welded Connection Design | 3-9
3-10
3-10
3-11 | | 10. PAN | NEL ANCHORS | 3-12 | | b. | Anchor Shear Capacity Anchor Angle and Plate Design Anchor Bolt Design | 3-12
3-12
3-15 | | CHAPTER 4: MAS | ONRY VENEER/STEEL STUD WALLS, (NONBEARING CONSTRUCTION) | | | Paragraph 1. INT | RODUCTION | 4-1 | | 2. GE | NERAL DESCRIPTION OF WALL SYSTEM | 4-1 | | 3. RE | QUIREMENTS FOR WALL COMPONENTS AND DETAILS | 4-1 | | b.
c.
d.
e.
f.
g.
h.
i. | Masonry Wythe Steel Studs and Framing Sheathing Veneer Anchors Fasteners Moisture Barrier Vapor Retarder Flashing Shelf Angles Cavity | 4-1
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4 | #### TABLE OF CONTENTS | (co | ontinued) Page | |---|----------------| | k. Masonry Crack Control I. Weep Holes | 4-4
4-4 | | m. Head Joint Vent | 4-4 | | 4. WALL SYSTEM DESIGN REQUIREMEN | NTS 4-4 | | a. Steel Studs | 4-4 | | b. Veneer Anchors | 4-6 | | c. Shelf Angles | 4-7 | | 5. WORKMANSHIP | 4-7 | | 6. DESIGN EXAMPLE | 4-7 | APPENDIX A: References APPENDIX B: Cold-Formed Steel Test Panel Drawings. APPENDIX C: FEMA 302 and Other Standard Guidance for Cold-Formed Steel Seismic Design APPENDIX D: Seismic Design Example APPENDIX E: Prototype Shear Panels for Cold-Formed Steel Seismic Design APPENDIX F: Seismic Qualification Procedure and Acceptance Criteria for Other Shear Panel Configurations APPENDIX G: Masonry Veneer / Steel Stud Walls (Nonbearing Construction) APPENDIX H: Metric Conversion Data Sheet. #### **FIGURES** | Figure | Title | Page | |--------|--|------| | 1-1 | Design Process for Loadbearing Cold-formed Steel Systems | 1-2 | | 2-1 | Typical Cold-Formed Section Symmetries | 2-3 | | 3-1 | Flowchart for Cold-Formed Steel Shear Panel Seismic Design | 3-2 | | 3-2 | Schematic of CERL Cold-Formed Steel Shear Panel Model | 3-4 | | 4-1 | Double Track Slip Joint | 4-5 | | B-1 | Prototype 3 Story Barracks | B-2 | | B-2 | Shear Wall Test Panel A1 | B-3 | | B-3 | Shear Wall Test Panel A2 | B-4 | | B-4 | Shear Wall Test Panel D1 | B-5 | | C-1 | Design Response Spectrum | C-2 | | | (continued) | Page | |-----|---|------| | D-1 | Design Response Spectrum for Fort Lewis Washington Barracks Building | D-18 | | D-2 | Schematic Drawing of Barracks Building Example | D-18 | | D-3 | Barracks Building Short Direction and Plan Views | D-19 | | D-4 | Example Connection /Anchorage Detail 1 st Row of Table D-5, D-8 – D-17 | D-20 | | D-5 | Example Connection /Anchorage Detail 2nd Row of Table D-5, D-8 – D-17 | D-21 | | D-6 | Example Connection /Anchorage Detail 3rdRow of Table D-5, D-8 – D-17 | D-22 | | D-7 | Example Connection /Anchorage Detail 4th Row of Table D-5, D-8 – D-17 | D-23 | | D-8 | Example Connection /Anchorage Detail 5th Row of Table D-5, D-8 – D-17 | D-24 | | D-9 | Example Connection /Anchorage Detail 6th Row of Table D-5, D-8 – D-17 | D-25 | | F-1 | Schematic Drawing Showing Sensor Locations | F-2 | | F-2 | Modified SAC Cyclic Test Time History with $\delta_{\!y}\!\!=\!\!0.4$ in and 6-in/imn Stroke Rate | F-4 | | G-1 | Wire Anchors | G-2 | | G-2 | Wire Anchor, Details | G-3 | | G-3 | Wire Anchor and Continuos Brick Joint Reinforcement | G-4 | | G-4 | Pintle Anchor | G-5 | | G-5 | Typical Brick Veneer Steel Stud Panel Wall | G-6 | | G-6 | Adjustable Wall Anchor Detail | G-7 | | G-7 | Masonry Veneer Steel Stud Panel Wall
Plan View | G-8 | | G-8 | Masonry Veneer Steel Stud Panel Wall Foundation Wall Section | G-9 | | G-9 | Masonry Veneer Steel Stud Panel Wall
Structural Steel Section | G-10 | | | (continued) | Page | |-------|---|------| | G-10 | Masonry Veneer Steel Stud Panel Wall
Reinforced Concrete Section | G-11 | | G-11 | Masonry Veneer Steel Stud Panel Wall
Steel Joist Section | G-12 | | G-12 | Slip Joint Details, Typical Single Track | G-13 | | G-13 | Slip Joint Details, Typical Double Track | G-14 | | G-14 | Slip Joint Details, Parapet Slide Clip | G-15 | | G-15 | Bottom Connection, Track Anchored to Concrete | G-16 | | G-16 | Expansion Joints, Brick or CMU Veneer Joint | G-17 | | | TABLES | | | Table | Title | Page | | 1-1 | Standard Minimum Delivered Uncoated Metal Thickness | 1-6 | | 1-2 | Fire Rated Assemblies | 1-8 | | 2-1 | Summary of Prescriptive Methods Limitations | 2-1 | | 2-2 | AISI Approved Steels | 2-4 | | 2-3 | Pipe Openings: Maximum Pipe Opening and Web Reinforcement | 2-10 | | 2-4 | Suggested Capacities for Screw Connections | 2-12 | | 2-5 | Suggested Design Loads for Fillet and Flare-Bevel Groove Welds | 2-13 | | 2-6 | Suggested Capacity for Expansion Anchors in Concrete | 2-13 | | 2-7 | Suggested Capacity for Power Driven Fasteners in Concrete | 2-14 | | 2-8 | Suggested Capacity for Power Driven Fasteners in Structural Steel | 2-14 | | 2-9 | Joist End Clip: Allowable Loads | 2-14 | | 3-1 | Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems | 3-3 | | 3-2 | Allowable Story Drift, Δ_a | 3-3 | | 3-3 | Maximum Column-to-Anchor Weld Thickness | 3-13 | | | (continued) | Page | |------|--|------| | 3-4 | Maximum Angle Thickness Based on Column-to-Anchor Weld Thickness | 3-13 | | C-1 | Occupancy Importance Factor | C-1 | | C-2a | Values of F_a as a Function of Site Class and Mapped Short-Period Maximum Considered Earthquake Spectral Acceleration | C-1 | | C-2b | Values of F_{ν} as a Function of Site Class and Mapped 1 Second Period Maximum Considered Earthquake Spectral Acceleration | C-2 | | C-3a | Seismic Design Category Based on Short Period Response
Accelerations | C-3 | | C-3b | Seismic Design Category Based on 1 Second Period Response Acceleration | C-3 | | C-4 | Coefficient for Upper Limit on Calculated Period | C-7 | | D-1 | Earthquake Ground Motion Definition Summary for Fort Lewis | D-1 | | D-2 | Barracks Building Weight Calculations | D-3 | | D-3 | Short Duration Lateral Seismic Force Calculations for the Barracks Building | D-5 | | D-4 | Long Direction Lateral Seismic Force Calculations for the Barracks Building | D-7 | | D-5 | Diagonal Strap Design in the Short Direction | D-8 | | D-6 | Gravity Load Calculations | D-9 | | D-7 | Trial Stud Sizes and Quantities for One Short-Direction Frame | D-9 | | D-8 | Column Design for Cold-Formed Steel Shear Panels – Barracks Example | D-10 | | D-9 | Column Capacity Calculations for Shear Panels – Barracks Example | D-10 | | D-10 | Column Intermittent Weld Design, and Combined Axial and Moment Capacity | D-11 | | D-11 | Column and Anchor Shear Design | D-12 | | D-12 | Screwed Connection Design | D-12 | | D-13 | Screwed Connection Rupture Strength and Welded Connection Design | D-14 | | | (continued) | Page | |------|---|------| | D-14 | Shear Panel Anchor Angle and Plate Design | D-15 | | D-15 | Shear Panel Anchor Angle and Plate Design (Continued) | D-16 | | D-16 | Anchor Moment and Anchor Bolt Shear Design | D-16 | | D-17 | Anchor Bolt Tensile and Cone Failure Design | D-17 | | E-1 | Prototype Shear Panel Load Capacities | E-1 | | F-1 | Format for Tabular Coupon Test Results | F-1 | | F-2 | Cold-Formed Steel Shear Panel Instrumentation | F-3 | | F-3 | Cyclic Test Load Protocol | F-4 | | F-4 | Summary of Test Panel Performance | F-5 | | F-5 | Acceptance Criteria for Shear Panels Based on μ,Ω,ρ_1 | F-6 | | F-6 | Values for R, Ω_0 and C_d | F-6 |